Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data

نویسندگان

  • Joset A. Etzel
  • Valeria Gazzola
  • Christian Keysers
چکیده

The discovery of mirror neurons has suggested a potential neural basis for simulation and common coding theories of action perception, theories which propose that we understand other people's actions because perceiving their actions activates some of our neurons in much the same way as when we perform the actions. We propose testing this model directly in humans with functional magnetic resonance imaging (fMRI) by means of cross-modal classification. Cross-modal classification evaluates whether a classifier that has learned to separate stimuli in the sensory domain can also separate the stimuli in the motor domain. Successful classification provides support for simulation theories because it means that the fMRI signal, and presumably brain activity, is similar when perceiving and performing actions. In this paper we demonstrate the feasibility of the technique by showing that classifiers which have learned to discriminate whether a participant heard a hand or a mouth action, based on the activity patterns in the premotor cortex, can also determine, without additional training, whether the participant executed a hand or mouth action. This provides direct evidence that, while perceiving others' actions, (1) the pattern of activity in premotor voxels with sensory properties is a significant source of information regarding the nature of these actions, and (2) that this information shares a common code with motor execution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions

Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from cla...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Maximum Covariance Unfolding : Manifold Learning for Bimodal Data

We propose maximum covariance unfolding (MCU), a manifold learning algorithm for simultaneous dimensionality reduction of data from different input modalities. Given high dimensional inputs from two different but naturally aligned sources, MCU computes a common low dimensional embedding that maximizes the cross-modal (inter-source) correlations while preserving the local (intra-source) distance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008